From Changing Atmospheric Circulation to Berry Temperature: Macro-, Meso-, Topo-, and Microclimate in Vineyards

Stuart B. Weiss
Creekside Center for Earth Observation
Precision Viticulture International

Environmental Biophysics

Grape Energy Balance

"Sunburn" in the Vineyard

Tens of millions of dollars lost annually in California alone.

The Climate Near the Ground

- *Macroclimate:* 1000 20 km Global Circulation, Synoptic Meteorology, Pacific Coast N-S
- *Mesoclimate*: 20 0.5 km Coastal-Inland, broad elevation Fulton – Healdsburg- Cloverdale
- *Topoclimate:* 0.5 km 10 m solar radiation, relative elevation N-S slopes, frost pockets
- *Microclimate*: 100 m 1 cm vegetation canopies, either side of trellis
- *Organism:* i.e. grape cluster physiology, thermal characteristics

Fulton (Russian River Valley) Apr-Oct Temp Westmap

Total Mean Temperature for point centered at 38.4796 N -122.770973 W
6 month period ending in October

Fulton Max/Min Apr-Oct Temp

Mesoclimate

800 m Climatic Normals 1971-2000 PRISM

Topoclimate

Crooked Creek All Stations
Average Hourly Temperature July 23- Oct 6 2006

Modeled Minimum Temperature at Crooked Creek

Microclimate: Fish-eye Photography

Grapes'-Eye View

Hourly Irradiance for VSP Clean - North Side

$$T_{grape} = T_{air} + (W/m^2)/45 (°F)$$

Hot day, No Wind, Exposed Grape "hotspot"

Effect of Row Direction

Heat Damage Comparison

Degree-Hours VSP 105° Day

VSP	DH> 100°F	DH > 105°F
S	111	69
N	28	2
E	39	2
W	94	63
SE	69	27
NW	61	34
NE	28	3
SW	107	72

Hourly Irradiance at Spottswoode Y-Trellis 30° Row NW Side

Berry temperatures Jul 31- Aug 31 Sprawl Trellis

Climate change adaptation

- 30-year lifetime of a vineyard
- Canopy management
- Re-trellis (crossarms)
- Re-graft to different variety
- Replant

Conclusions

- Macro-, meso-, topo-, micro-climate
- Winegrapes are very sensitive to temperature
- Excellent model system for climate impacts
- Tools to predict grape temperatures from weather station data